
N94-14-997

DETERMINING THE LOCATIONS OF THE VARIOUS CIRC
RECORDING FORMAT INFORMATION BLOCKS

(User data blocks, C2 & C1 words and EFM frames)
ON A RECORDED COMPACT DISC

Dennis G. Howe

Optical Sciences Center

University of Arizona

Tucson, AZ 85721

Janua_ 28,1993

175

P_, ,,, ,_#OT l_a_D

Introduction:

Just prior to iis I_ng-EFM modulated (i.e., convened to eight'to-fourteen channel data by

the EFM encoder) and written to a Compact Disc (CD), information that passes through

the CIRC Block Encoder is grouped into 33-byte blocks referred to as EFM frames. 24 of

the bytes that make up a given EFM frame are user data that was input into the CIRC

encoder at various (different) times, 4 of the bytes of this same EFM frame were created

by the C2 ECC encoder (each at a different time), and another 4 were created by the C 1

ECC encoder (again, each at a different time). The one remaining byte of the given EFM

frame, which is known as the EFM frame C&D (for Control & Display) byte, carries

information that identifies which portion of the current disc program track the given EFM

frame belongs to and also specifies the location of the given EFM frame on the disc (in

terms of a timest_p that]a_ a res01Ut'ion" of-]/75_ seconai-_ 98 EF-I_ fr_aes). (Note:

since the program track and time information is stored as a 98-byte word, a logical group

consisting of 98 consecutive EFM frames must be read, and their respective C&D bytes

must be catenated and decoded, before the program track identification and time position

information that pertains to the entire block of 98 EFM frames can be obtained.) The

C&D byte is put at the start (0th byte) of an El_M_ame in real time; its placement

completes the construction of the EFM frame - it is assigned just before the EFM frame

enters the EFM encoder. In Fig. 1., the 33 x 1 column vector EFM <i> represents EFM

frame No. "'""I , the byte labeled as F0, i in this column vector is the C&D byte of EFM
frame No. "i".

In the 134 (row) x 33 (column) array that accompanies this text, each row represents an

EFM frame and each EFM frame's identification number is given by the value of the first

element of each row, i.e., these values are found in the column identified as F 0 at the top

of the 134 x 33 array. The numerical value of these (column F0) array elements

corresponds to the value Of the second subscript ("i") of the element F0, i in the column

vector EFM <i> of Fig. 1. EFM frames are written sequentially to the CD disc when it is

recorded. Thus, byte F 0 of EFM frame No. 0 is recorded first, followed by byte D 1 of

EFM frame No. 0, ..., and the 33rd byte written to the disc is byte C13 of EFM frame No.

0. As EFM frame No. 1 directly follows EFM frame No. 0, the 34th byte written to the

disc is byte F 0 of EFM frame No. 1, etc. The 134 x 33 array is therefore a map of how

data is written to the disc; the first row (i.e., the top row) of the array is written first, left

to right, followed by the next row, again left to right, etc.

In the following discussion we will refer to four distinct blocks of data: (i) 24-byte User

Input Data blocks, (ii) 28-byte C2 words, (iii) 32-byte C1 words and (iv) 33-byte EFM

frames. In order to track the location on the recorded CD disc of the various data bytes,

we shall "tag" (or identify) each data byte that is recorded on the disc with a number, or

index, that corresponds either to the instant in time at which the particular byte entered

the CIRC encoder (in the case of User Input Data), or to the instant in time at which the

data byte was created by the CIRC encoder (as is the case with C2 parity bytes, C1 parity

bytes and EFM frame C&D bytes). Once a byte is "tagged", the number it is tagged with

will be kept, i.e., that number will not change, even when the particular byte becomes a

176

memberof otherCIRC informationblocks(whichwill occurasthebyteflows through
theCIRC encoder).In orderto assignnumericalvaluesto thebyte "tags",we shallthink
of informationflowing throughtheCIRC encoderin expanding-sizeblocks,namely,the
UserInput Datablocks,C2andC1words,andEFM framesmentionedabove.

The User Input Data Blocks:

24 bytes of sequential user data is input to the CIRC encoder as a single 24-byte User

Input Data block. A User Input Data block that enters the CIRC encoder at instant "k" is

represented by the column vector D <k> of Fig. 1. The sequence in which user data bytes

filled the User Input Data block is indicated by the first subscript of each data byte (i.e.,

element) of D<k>; the instant at which the block entered the CIRC encoder is denoted by

the second subscript of the various bytes ofD <k>. Thus, DI, k denotes the first byte of the

24-byte User Input Data block that entered the CIRC encoder at instant "k" and D24,k

denotes the 24th (and last) byte of the User Input Data block that entered the CIRC
encoder at instant "k". Sometimes we shall refer to blocks that enter the CIRC encoder at

instant "k" as block No. "k", and vice versa.

The C2 Words:

Directly after they enter the CIRC encoder, the bytes of a 24-byte User Input Data block

are reordered (or swapped) such that the sequence {Dl,k, D2, k, D3, k, , D23.k, D24,k }

becomes the sequence {D 1,k, D2,k, D9,k, D10,k, D17,k, D18,k, D3,k, D4,k, D1 l,k, D 12,k,

Dlg,k, D20,k, D5,k, D6,k, D13,k, Dl4,k, D21,k, D22,k, D7,k, Ds,k, D15,k, Dl6,k, D23,k, D24,k}.

Then, after delaying the first 12 bytes of the reordered User Input Data block by 48 bytes

(which amounts to interleaving the first half of the reordered User Input Data block by

two reordered User Input Data blocks) the resultant (reordered, two-block interleaved)

24-byte block is encoded by the C2 ECC coder. This encoding process involves the

computation of four C2 parity bytes and the subsequent addition of them to the reordered

and doubly-interleaved 24-byte block between bytes D20,k_ 2 and DS, k. This results in a

28-byte C2 word such as the one represented by the column vector C2<P > in Fig. 1. Four

new bytes, namely the C2 parity bytes C2p0, C2Pl, C2p2, and C2p3 are created by the

CIRC encoder when the C2 word is formed; we therefore "tag" these four parity bytes

with a numerical value that corresponds to the instant at wh_ich these parity bytes were

created. In addition, we "tag" the C2 word itself with this same numerical value. This is

illustrated in Fig. 1, where it is shown that the column vector C2<P >, which represents C2

word No. "p", contains the four parity bytes C2po,p, C2pl,p, C2p2,p and C2p3,p (recall our

convention is that the second byte subscript contains the numerical value that corresponds

to the instant at which the C2 word is created, or equivalently, to the C2 word's No.

"value"). This same C2 word (i.e., C2 word No. "p") also contains bytes from User Input

Data block No. "p-2" as its first 12 information bytes (these 12 bytes experienced a delay

of 2 User Input Data blocks prior to entering the C2 ECC encoder), as well as bytes from

User Input Data block No. "p" as its last 12 information bytes (these 12 bytes experienced

no delay between the time they entered the CIRC encoder and the time at which they

entered the C2 encoder - in effect these 12 bytes were input directly into the C2 encoder).

177

The C1 Words:

Next, the 28-byte block output by the C2 coder is interleaved again, this time on a byte-

by-byte basis. Here, the 2nd byte of a given C2 word is delayed by four C2 words (112

bytes) relative to the first byte, the 3rd byte of the given word is delayed by eight C2

words (224 bytes) relative to the first byte, ..., and the 28th byte of the given word is

delayed by one-hundred-and-eight C2 words (3,024 bytes)relative to the first byte. A 28-

byte block of data that has been variably-interleaved in this manner is input to the C 1

ECC encoder, which computes four C 1 parity bytes and adds them to the end of the

variably-interleaved 28-byte block that was input to it. This is illustrated in Fig. 1, where

it is shown that column vector C 1<n>, which represents C 1 word No. "n", has C 1 parity

bytes Clp0,n, Clpi,nl Cip2, n and Clp3,p as its last four bytes. From Fig. 1 we also see

that the 28 information bytes of Cl word No. "n" (i.e., its first 28 bytes) consist of user

data bytes taken from User Input Data blocks that entered the CIRC encoder at various

times ranging from two C 1 word-times prior to the time of the current word (cf., the first

byte of C 1<n>, namely D l,n. 2, which entered the CIRC encoder as a member of User
Input Data block No. "n-2") to one-hundred-and-eight C 1 word-times prior to the current

word (cf., the 28th byte of C 1<n>, namely D24,n_ 108, which entered the CIRC encoder as a

member of User Input Data block No. "n-108"). It can also be seen from Fig. 1 that the

information portion of a C 1 word contains parity bytes that belong to four different C2

words (namely, bytes C2p0,n.48 through C2p3,n.60 of column vector C 1<n>).

The EFM frames:

A final interleaving follows the C 1 encoding. The odd bytes, namely the 1st, 3rd, 5th, ...,

31 st bytes, of the 32-byte block that is output by the C 1 coder are each delayed by one C 1

word (i.e., by 32-bytes) relative to the even bytes of the same C1 word. And lastly, a

single EFM C&D byte is appended to the beginning of each of the resultant, singly-

interleaved 32:byte blocks to form the 33-byte EFM frames. The column vector EFM <i>

in Fig. 1 is a representation of EFM frame No. "i". Note that this EFM frame's C&D

byte, namely byte F0,i, and the two C1 parity bytes Clpl,i and Clp3,i, are the only bytes

in EFM frame No. "i" that were created (by the CIRC encod-er) at instant "i". The EFM

frame C&D byte F0, i is created by the CIRC encoder at the instant the EFM frame No. "i"
is formed, and the two C 1 parity bytes mentioned directly above, were created by the C 1

encoder at this same time, which is why they are labeled as parity bytes that belong to C 1

word No."i".

Locating Specific Information Bytes and CIRC Data Structures on the Recorded

Disc:

In order to keep track of the various processing steps outlined above, we can use an index

that increments once each time a new EFM frame is created. Concurrent with that event

(i.e., the creation of an EFM frame), a new 24-byte User Input Data block is input to the

CIRC encoding system, a new C2 word is encoded by the C2 coder, and a new C 1 word

178

is encodedby theC1coder. Thus,we tagall 24bytesof a single User Input Data block

with a common index, the four C2 parity bytes that correspond to a given C2 word share

a common index (since _lie-y were all created at a particulai" time), and the four C1 parities

of a given C 1 word are given a common index (again, since they were simultaneously

created). Specifically, the 24 bytes of a given User Input Data block are all given the

index value assigned to the EFM flame C&D byte that was current when the first byte of

the 24-byte User Input Data block entered the CIRC encoding system. Similarly, the

group of four C2 parity bytes, and the group of four C 1 parities that were each created via

single encoding operations, are each given the index value of the EFM flame C&D byte

that was current when those groups of parities were computed and assigned by the

respective ECC coders.

It is these index values that are listed in the 134 x 33 array, which is our map of the

recorded CD disc. From that array we see that the C&D byte of EFM frame No. 0 (byte

F 0 in the first, i.e., top, row of the array) is assigned an index = 0, that user data byte #1 of

EFM frame No. 0 (byte D ! in row 1) came from the User Input Data block having index =

-3 (i.e., this byte came from the User Input Data block that was input while the EFM

frame with index = -3 was current), that user data byte #2 (byte D 2 in row 1) came from

the User Input Data block having index = -6 (i.e., the User Input Data block that was

input while the EFM frame with index = -6 was current), that user data byte #9 (byte D 9

in row 1) came from the User Input Data block having index = -11, ..., that C2 parity byte

number 0 (byte C20 in row 1) was created by the C2 coder when the EFM frame with

index = -49 was current, ..., and that C 1 parity byte number 3 (byte C 13 in row l) was

created by the C 1 coder when the EFM frame with index = 0 was current.

The data in a given EFM frame is sequentially recorded on the disc and sequentially

indexed EFM frames are recorded in sequence. Thus, the 134 x 33 array is essentially a

map of how data is recorded (laid out) on the disc. Byte F0 of EFM frame No. 0 is

recorded first, followed by byte D 1 of EFM frame No. 0, etc. Byte C13 of EFM frame

No. 0 is the last byte of that frame to be recorded and it is directly followed by byte F 0 of

EFM frame No. 1. Because of this, the array can be used to determine the location of all

the data from a specific User Input Data block, or from a specific C2 or C 1 word. For

example, the 24 data bytes located in columns 2 through 13 and in columns 18 through 29

that have the same index value all came from the same User Input Data block (e.g., byte

D! in EFM frame No. 0, byte D 2 in EFM frame No. 3 and byte D 9 in EFM frame No. 8

all are members of the User Input Data block having index = -3). With the help of the

column vectors given in Fig. 1, the locations on the disc of all the bytes of specific C2

and C 1 ECC words can also be determined.

Using the column vector representations for an arbitrary EFM frame, an arbitrary C2

word and an arbitrary C1 word that are given in Fig. 1, we see that C2 word No. "p" (i.e.,

the C2 word that was created when EFM frame No, ,,p" was current) has data bytes that

were input as part of User Input Data block No. "p-2" as its first 12 bytes and data bytes

that were input as part of User Input Data block No. "p" as its last 12 bytes. Thus, if one

wanted to read the disc and retrieve, for example, all the data (24 bytes) that were input as

179

UserInputDatablock No. 0, onewouldhaveto reada lengthof disctrackwhich
containstheentire56bytesthatmakeupC2wordsNo. 0 andNo. 2 (sincethelast 12
bytesof C2wordNo. 0andthefirst 12bytesof C2wordNo. 2 containthe24bytesthat
wereinputasUserInputDatablockNo. 0). To acquireC2word No. 0 onewould have
to readall thosebytesin columns2 - 13(bytesD1throughD20) of the 134x 33arraythat
haveindex= -2 andall thosebytesin columns14- 29 (bytesC20throughD24) thathave
index= 0. Similarly, to acquireC2word No. 2, onemustreadall thosebytesin columns
2 - 13thathaveindex= 0andall thosebytesin columns14- 29 thathaveindex= 2.
Fromthe 134x 33arrayweseethatthismeansthat EFMframesNo. 1throughNo. 110
mustbe read. However,notethatbyteD24of EFM frameNo. 1!0 (which is the lastbyte
of C2word No. 2) is alsopartof C1word No. 110,whichhasall of its odd-numbered
bytesin EFM frameNo. 111(thecolumnvectorrepresentationOf anarbitraryC1word
givenin Fig. i showsthat the2nd,4th, 6th,..., 32ndbytesof C1wordNo. "n", i.e., bytes
D2,n.6,D10,n.14, DlS,n.22.... , Clp2,narepartof EFM frameNo. "n", while the 1st,3rd,
5th, ..., 31stbytesof C1word "n", i.e.,bytesDl,n_2,D9,n_10,D17,n_lS,...,Clp3,narepart
of EFM frameNo. "n+l"). ThismeansthatEFMframeNo. 111mustbereadtoo, sothat
C1wordNo. 110canbeacquiredanddecoded(becauseC1decodingmustbe
accomplishedbeforeC2decoding).In total,then, 111EFM framesmustbereadfrom the
discin orderto retrievethe24databytesthatwereinputasa singleUserInputData
block...

To augmenttheunderstandingof how to use the 134 x 33 array to determine the locations

of CIRC-encod]ng data Structures on a recorded CD disc, on that array we have drawn

circles around the locations of all 28 bytes of C2 word No. 0, and drawn squares around

the locations of all 32 bytes of C1 word No. 110. Triangles have also been drawn around

the locations of all 24 bytes of User Input Data block No.5. (These CIRC information

blocks were arbitrarily chosen.)

CD Audio Interpolation:

The above analysis sheds light on the purpose for performing the byte reordering

(swapping) that is done on the Input User Data block prior to C2 encoding. The CD

system is designed, at its lowest level, as a serial (tape-like) digital audio recorder - audio

program material is sampled at a rate of 44.1 KHz and those samples are digitized as 32-

bit words (each 4-byte digital audio sample consists of a 16-bit right-channel audel and a

16-bit left-channel audel). Thus, a given 24-byte User Input Data block contains exactly

6 audio samples; the first four bytes (bytes D 1j - D4j,in the case of Input User frame No.

"j") constitute the first audio sample, the next four bytes (Dsj - Dsj) make up the second

audio sample, etc. The column vector representation of a C2 word in Fig. 1 shows that

the first 12 bytes of C2 word No. "p" (which consist of bytes D l,p-2 tO D4,p_ 2, D9,p_ 2 to

Dl2,p. 2 and Dl7,p_ 2 to D20,p. 2 in scrambled form) would carry the 1st, 3rd and 5th audio

samples from User Input Data block No. "p-2", while the last 12 bytes of that same C2

word (which consist of bytes D5, p to Ds,p, D13,p to D16,p and D21,p to D24,p in scrambled

form) would carry the 2nd, 4th and 6th audio samples from User Input Data block No.

"p". This means that the audio samples carried in a single undecodable C2 word could be

180

interpolated from their "neighbor" audio samples, which are carried by two other C2

words, one of which is recorded at a distance of two C2 words earlier than the non-

decodable word and th_ other at a distance of two C2 wordsIater than the non-decodable

word. For example, if C2 word No. 10 could not be decoded, one could interpolate

values for audio samples 1, 3, and 5 that belong to User Input Data block No. 8 (and

which are carried as the first 12 information bytes of C2 word No. 10) using the audio

samples 2, 4, and 6 of User Input Data block No. 8 (which are carded as the last 12

information bytes of C2 word No. 8). Similarly, values for the audio samples 2, 4, and 6

from User Input Data block No. 10 (which are carried as the last 12 information bytes of

C2 word No. 10) could be interpolated using the audio samples 1, 3, and 5 from User

Input Data block No. 10 (which are carried as the first 12 information bytes of C2 word

No. 12).

Note that the byte reordering that is done prior to C2 encoding also causes the

interleaving of the left and right stereo audels that constitute the 1st, 3rd and 5th digital

audio samples from a given User Input Dat_i block. For example, from the Fig. 1 column

vector representation of a C2 word, note that the first two bytes (i.e., the left channel

audel) of digital audio sample 1, viz., D 1 and D 2, are followed by the first two bytes

(again, the left channel audel) of digital audio sample 3, viz., D 9 and DI0, which are

followed by the first two bytes of digital audio sample 5, viz., D17 and D18; these are

followed, in sequence, by the last two bytes (i.e., the fight channel audel) of digital audio

samples 1, 3 and 5 from the same User Input Data block. Digital audio samples 2, 4, and

6 from a given User Input Data block are treated similarly. This feature allows

independent (separate) interpolation of values for either left channel or right channel

audels using "neighbor" left channel or fight channel information that is carried in another

C2 word.

Handling of Long Burst Errors:

From the 134 x 33 array of recorded byte index values, we see that a burst error having

minimum length of 100 bytes would be required cause two errors to occur in a single C2

word. For example, an error burst extending from byte D1, 3 (the second byte of EFM

frame No. 3) to byte D2, 6 (the third byte of EFM frame No. 6) would contaminate two

bytes of C2 word No. 2. We can also see that an error burst that has a minimum length of

166 bytes would be required to cause two errors in both of the two C2 words that carry

"neighbor" audio samples. For example, a burst extending from byte D 1,3 to byte D2, 8

would be required to cause two errors in both C2 word No. 2 and C2 word No. 4.

Clearly, very long burst errors can be corrected by the highly-interleaved C2 code, and

extremely long burst errors are required to defeat the concealment of audio information

errors via interpolation.

The C2 code's immunity to long burst errors, however, can readily be compromised if

there is a high number of short random errors. For example, suppose that a 20-byte long

burst error occurs; it will cause (only) one byte to be erroneous in each of twenty different

C2 words. Then, the probability that a short random error will contaminate a second byte

181

of any one of these same C2 words is roughly 20 x 27 x PB = 540 PB, where PB is the

byte error rate that describes the occurrence of short random errors. Similarly, if a long

burst error that contaminates two bytes of a given C2 word has occurred, then the

probability that a short random error will contaminate a third byte of that same C2 word

is roughly 26 x PB. Clearly, if the short random error rate at the input to the C2 decoder

is as high as, say PB = 10 .5 to 10 -3 erroneous bytes/byte (a range of rate values that may

well be representative of the short random error rate of an aged, well-used CD disc), then

there would be an unacceptably high probability of occurrence of uncorrectable C2 words

(i.e., C2 words having more than two or three flagged errors), and/or misdecodable C2

words (i.e., C2 words having more than two unflagged errors). It is the job of the C1

code, which is decoded prior to C2 decoding, to reduce the short random error rate at the

input of the C2 decoder to an acceptable level.

Correction of Short (Random) Errors:

The purpose of the single-frame interleaving that is done just prior to C 1 encoding is to

enhance the short random error correcting capability of the C 1 code. Specifically, since

the conditional probability (conditioned on the occurrence of an uncorrectable error

pattem) of C 1 misdecoding, i.e., having the C 1 decoder unknowingly output incorrect

data, is about 1% when a C 1 decoder is configured to correct two errors, versus about

0.0002% when a C 1 decoder is configured to correct only one error, it is desirable to use

single-error correction at the C 1 decoding level. (Since the Hamming distance of both the
C1 and C2 codes is five, when a codeword of either of_ese_codes is misdecoded the data

block output by the decoder will have a minimum of five incorrect bytes; thus an

uncorrectable error pattern that contains, say, only three erroneous bytes will be enlarged

to a five, or more, byte error if erroneous decoding occurs.) The one-word interleaving

done at the C 1 level allows a single-error-correcting C 1 decoder to correct two-byte long

errors (since such errors will contaminate only one byte in each of two successive C1

words). This is important since it has been observed that the average length of the short

random errors that occur in injection molded CD Digital Audio Discs and CD-ROM discs

is about 11 bits in length.

The C1 block error rate (BLER) is equal to the fraction of C1 words (at the input to the

C 1 decoder) that contain one or more single or multiple-byte errors. If the occurrence of

any type of error event is a relatively rare event, e.g., if only 0.1%, or less, of the bytes on

a disc are erroneous, then the BLER provides a reasonable estimate of the rate of

occurrence of error events (of any type). However, a long burst error that has length BL

only increments the BLER count by at most [BL/32], where [x] represents the least

integer >_x. Therefore, the BLER is essentially a measure of the rate of occurance of

short random errors.

The Red Book BLER specification is BLER < 0.03. Since there are (at lx playback

speed) 7,350 C1 blocks/second, this translates to

BLER < 220 contaminated C 1 words/second.

182

In what follows, we shall assume that an error-contaminated EFM frame experiences, on

average, a single short random error event (i.e., that the short random error rate is

sufficiently low that the probability of two error events occurring in a single EFM frame

is very small relative to the probability of occurrence of only one error event). We shall

also assume that the average length of a short random error is 1.375 bytes (11 bits). Such

an average length error may start at any one of eight locations in an arbitrary byte of a

depth-one interleaved C 1 word. Thus, the 1.375-byte error event will contaminate only

one byte in each of the two depth-one interleaved C 1 words with probability 5/8 and will

contaminate two bytes in one, but only one byte in the other, of the pair of interleaved C 1

words with probability 3/8.

Random short error rate at the input of the C1 decoder: Since, on average, a random

short error event always contaminates two C 1 words, the short error event rate can be

approximated by

BLER short error events

2 sec

The coresponding byte error rate is

(_.__) events x (1.375) erroneous bytes /73_3__)sec I1) C1 wordPB _ × ×
sec event C1 word byte

or

PB ,_,m
BLER erroneous bytes

34,211 byte

Taking BLER < 220 error events/sec, the random short error rate at the input of the C1
decoder is found to be

PB <65x 10"_
erroneous bytes

byte

Random short error rate at the output of the C1 decoder: We saw earlier that, on

average, a short random error event will always cause two C1 words to be contaminated

and that 3/8 ths of the time one of the two contaminated words will have two bytes in

error. That is, on average, only one-half of three-eighths of the contaminated C 1 words

will contain more than one erroneous byte. Thus, the byte error rate (due to short random

errors having an average length of 11 bits) at the output of a single-error-correcting C 1

decoder is given by

183

(3) (LE) (2 0.) erroneousbytes/undecodableB R undecodabies 32 x735 bytes / seePB_ x x
see

When the BLER is at its maximum specified (in the Red Book) value of 220 C1

words/second, a single-error correcting C 1 decoder will fail to correct about 41 C 1

words/second. And ifa CD disc that is just within the Red Book BLER specification is

played, the short random error rate at the output of a single-error-correcting C 1 decoder is

estimated to be

41x232x 7350

erroneous bytes / sec
= 3.5 x 10 -4

erroneous bytes

bytes / sec byte

The short random error rate at the output of a more aggressive C1 decoder, e.g., a double-

error corrector, would be substantially lower since only those C 1 words that have more

than two bytes in error would remain uncorrected (but, keep in mind that such a decoder

will have a relatively high probability of misdecoding when an uncorrectable error pattern

is encountered). Other alternatives for more powerful C 1 decoding would be to use the

C 1 decoder to correct a single error together with one erasure per C 1 input word

(assuming, of course, that a means of reliably erasing bytes in the input C! word is

available), or to use the C 1 decoder to correct zero (or one) errors per input C 1 word and

simultaneously detect up to four (two) errors and mark them as erasures for subsequent

correction by an erasure-correcting C2 decoder.

The purpose of the preceding discussion of the short random error rates at both the input

and output of the C 1 decoder was to illustrate how the singly-interleaved C 1 code

contributes to the overall data reliability of the CIRC coding system, and to make the

point that multiple (> 2) byte errors in C2 words (i.e., at the input to the C2 decoder)

become highly probable when a long burst error occurs in conjunction with a moderately

high rate of short random error events (i.e., a moderately high BLER value).

184

C1 word No. "n"...

EFM frame No. "i"..

User Input Data
Block No. "k"...

D1, k

D2,k

D3,k

D4,k

D5,k

D6,k

D7,k

D8,k

D9,k

D10,k

D11 ,k

D12 ,k
D_-"E_> :--

D13 ,k

D14, k

D15 ,k

D16,k

D17 ,k

D18,k

D19,k

D2o ,k

D21 ,k

D22, k

D23,k

D24,k]

C2 word No. "p"...

D
1,p-2

D
2,p-2

D
9,p-2

Dlo,p- 2

D17 ,p- 2

D18, p- 2

D3,p 2

D4,p- 2

Dll ,p- 2

D12 ,p- 2

D19 ,p- 2

D2O,p - 2

C2P0, p

C2<P > := C2Pl,P

C2p2, p

C2P3, p

D
5,p

D
6,p

D
13,p

D
14,p

D21 ,p

D22,p

D
7,p

D
8,p

D15,p

D16,p

D
23 ,p

D
24,p

Cl <n> 7=

Dl,n- 2

D
2,n 6

Dg,n 10

D
10,n- 14

D17,n- 18

D
18,n- 22

D3,n- 26

D4,n- 30

D
11 ,n- 34

D
12,n- 38

D
19 ,n 42

D20, n - 46

C2P0,n 48

C2Pl, n - S;

C2pL n- 56

C2P3, n - 60

D5,n 64

D
6,n- 68

D
13,n- 72

D14,n- 76

D21, n 80

D22,n- 84

D7,n- 88

D
8,n- 92

D
15,n- 96

D16 ,n- 100

D23,n- 104

D24, n - 108

ClPo, n

ClPl,n

ClP2,.

ClP3, n

EFM <i> ::

F0,i

Dl,i- 3

D2,i - 6

D9,i- 11

D10,i 14

D17, i 19

D18,i 22

D3,i 27

D4,i- 30

D11 ,i- 35

D12,i 38

D19,i - 43

D20, i - 46

C2P0,i 49

C2pl,i - 52

C2P2, i - 57

C2P3, i - 60

D5,i - 65

D6,i - 68

D13, i - 73

D14, i - 76

D21, i - 81

D22, i 84

D7,i - 89

D8,i - 92

D15,i 97

D16, i 100

D23,i- 105

D24,i 108

ClPo,i_ I

CIPl, i

CIP2,i- 1

CIP3, i

Figure 1. The CIRC encoder blocks
185

EFU_* _

W

J

j •

J

j eq

j ::

j n

j s_

j

p

j ,-

J "

; ell

i w EFM To s = _ * , _. IT

i _ * 1 o i l ,I _*

j

•l ,o
j

II is i= _

j , :1 ,i is _ • .,

J

J ' :i ii ii ii

m u

,,_..

u is

S::":"a la

ml _l *! •

:_::_-:
,. :., :,, :

,:,_"" "_..,,.
la la

1.,":":..."

,,,:-g- :

.,:,,::_

.-'•
.... :._,.

H" .::H°H_"_":.:'2"-:Hg _'" :: U ." :

,,"',,"°:" : .:° ',';_'_' ":" : .:: °___.,,". ". . ..°..". . ." E:i"
• i_ n},'; :::::::::::::::::::::::,... ,. ,,",,,.

i1 ! 21 I ii _ iT { i] • s| f,I ii _ il li _p N IlII I _ i$ M IS

ii ii]1 I _ 1I Is I II i sl I _ i i_ _ _ i I1 1 _ n} t I?

IT I I_ I 11 _ _ q iT II |1 _ 6| i '/_ N lal _ IT I l? II it II

"+o: :::: _:::°"H'_._''H_:E"_",,

....... :,_1IT ii • 4 I ! ii i

..... • _ :

.: _,_, _II ii ni ill l I nl 17 i

_ ii i1 i *

HH:"_....." !:
zl I I1

::"S::J.

.:: _H":°o.,,.

: ; .'.'?
91:11,',
:::"S
s I

II $ I

I* I 1]

II I| a

:":"_1""1"1"1.. .,. . .

Jl • 41 M I _ • •

H_.___F
a

"'"HH_H"::':o"- - -

......:_.,,:_::=1 II 14 - I

! m I! _ • , ,

.":",",:1".

.,:,,_.,o:.,

i"-"....,,,,.,i,.......,,,H.:_-'-_
............ = _"",':°._ . ,,,,,,:::,,::::,,_

"H"_?+' :"::::
u am al 111 is s i_ 1* • It • ii

:: :".g : l" : •

"i"i"""i!-:!.... ,", . . ,',._..........
r, S "t_ *t _1 *l • 1_ _ zl It ii I I tl w

i;u

1".5

186 :_

',_

.:"-:.".:_:""::""":":.:,.:':.°i.,..- ..-.. .,o...-. ,,"..,,-......',,+_',,.-":':.-

:',:,,'_.: .%':_ :._-,",: .':= .':::.:'-'I::::: ,;'-':::: ::."'..L,,":',',1,.'",',:1

......!i!i!!iili;i!i i..................... ,_ ,', g

,..,,. ,. _ ... ,._, = , = ,, _.. ,.,. .o,m.,,,,,.

........""iii'::i"""'ii'i"..........
I_11 Ill 114 III Ill _1 _11 I i _ I 41 11 Ill :1_ • Ildl I_1 I_M I_

.............. _1_ : : t1 m_ '1 : " N : g II : $) Ill : : : ::

........... :: .:.: ..:::. g.

